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Transfer Learning with Graph
Co-Regularization

Mingsheng Long, Jianmin Wang, Guiguang Ding, Dou Shen, and Qiang Yang, Fellow, IEEE

Abstract—Transfer learning is established as an effective technology to leverage rich labeled data from some source domain to build
an accurate classifier for the target domain. The basic assumption is that the input domains may share certain knowledge structure,
which can be encoded into common latent factors and extracted by preserving important property of original data, e.g., statistical
property and geometric structure. In this paper, we show that different properties of input data can be complementary to each other
and exploring them simultaneously can make the learning model robust to the domain difference. We propose a general framework,
referred to as Graph Co-Regularized Transfer Learning (GTL), where various matrix factorization models can be incorporated.
Specifically, GTL aims to extract common latent factors for knowledge transfer by preserving the statistical property across domains,
and simultaneously, refine the latent factors to alleviate negative transfer by preserving the geometric structure in each domain.
Based on the framework, we propose two novel methods using NMF and NMTF, respectively. Extensive experiments verify that GTL
can significantly outperform state-of-the-art learning methods on several public text and image datasets.

Index Terms—Transfer learning, negative transfer, graph regularization, matrix factorization, text mining, image classification

1 INTRODUCTION

THE exponential growth of big data from a variety of
domains has created a compelling demand for innova-

tive methods to analyze and manage them. Unfortunately,
for some newly-emerged target domains, labeled data are
usually very sparse, making standard supervised learn-
ing algorithms infeasible. Moreover, collecting sufficient
labeled data from scratch is very expensive. One may
expect to leverage the abundant labeled data readily avail-
able in some related source domains for training an accurate
classifier in the target domains. However, standard super-
vised learning algorithms cannot reuse the labeling knowl-
edge across domains effectively, since they fundamentally
require the training and test data to be sampled from the
same distribution. Recently, the literature has witnessed
an increasing interest in developing transfer learning [2]
algorithms for cross-domain knowledge transfer problems.
Transfer learning has proven to be promising in real-
world applications, e.g., text categorization [3], sentiment
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analysis [4], image classification [5], video summariza-
tion [6], and collaborative filtering [7], etc.

One major computational problem of transfer learning
is how to explore the shared knowledge structure underly-
ing input domains as the bridge to propagate supervision
information from the source domains to the target domains.
Recent works focus on encoding the knowledge structure
into common latent factors and extracting them by preserv-
ing specific property of the original data: 1) preserving the
statistical property, i.e., maximizing embedded variance or
minimizing reconstruction error [3], [8]–[12]; and 2) pre-
serving the geometric structure, i.e., encoding similar exam-
ples with similar representations [13]–[17]. Specifically, the
statistical property here refers to the descriptive statistics
of input data, e.g., sample variance, or global variabil-
ity [18]. The geometric structure refers to the embedded
manifold, which supports the intrinsic distribution of input
data and locally looks like a flat low-dimensional Euclidean
space [19].

The main limitation of most prior transfer learning
methods is that they do not simultaneously preserve both
the statistical property and geometric structure. In real-
ity, preserving these complementary properties together is
important to make learning models robust to the domain
difference. In some difficult scenarios, the intrinsic domain
structure cannot be effectively explored with a single prop-
erty of data. In this case, the prior methods may suffer
from ineffective transfer, i.e., underfitting the target data. In
other difficult scenarios, the domain difference can be so
large that it may be difficult to extract common factors as
the bridge for knowledge transfer. In this case, the prior
methods may suffer from negative transfer, i.e., overfitting
the target data. These issues motivate us to design a frame-
work to explore both the statistical property and geometric
structure for robust transfer learning.
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For the ineffective transfer problem, inspired by Zhu
et al. [18], the statistical and geometric properties may
focus on different aspects of the original data and are
complementary to each other in reality. The justifications
are as follows. On one hand, each data point may be
associated with some latent factors. For example, a text doc-
ument can be regarded as a combination of several hidden
semantics. Extracting these latent factors involves preserv-
ing the statistical property of the original data [20]. On the
other hand, from the geometric perspective, the data points
may be sampled from a distribution supported by a low-
dimensional manifold embedded in a high-dimensional
space [19]. Preserving this geometric structure involves
encoding similar examples or features with similar embed-
dings. By preserving the statistical and geometric properties
together, we can improve the smoothness of latent factors
and enhance the effectiveness of transfer learning.

For the negative transfer problem, we put forward the fol-
lowing justifications. When the source and target domains
are different enough, it is impossible to extract some latent
factors common to both domains. If we forcefully extract
some “common” latent factors, then they may result in
the inconsistency between the target domain cluster struc-
ture and the source domain discriminating structure. To
alleviate this problem, we propose to preserve the geo-
metric structure in each domain. Thus, the geometric
structure of target domains will be respected even if it
is contradicted with the common factors transferred from
source domains.

In this paper, we propose a general framework, referred
to as Graph Co-Regularized Transfer Learning (GTL),
to achieve more effective and robust transfer learning.
Specifically, GTL aims to extract some common latent fac-
tors for knowledge transfer by preserving the statistical
property across domains, and simultaneously, refine the
latent factors to alleviate negative transfer by preserving
the geometric structure in each domain. The key assump-
tions of GTL are as follows: 1) by preserving the statistical
and geometric properties simultaneously, we can improve
the smoothness of latent factors and enhance effective
transfer learning; 2) by preserving the geometric structure
in each domain, the domain-specific geometric structure
can be respected to alleviate negative transfer. The main
contributions of this paper are summarized as follows.

• To cope with the considerable change in data dis-
tributions from different domains, GTL aims to
simultaneously preserve the statistical property and
geometric structure in a unified framework. The
learning goal of GTL is to enhance effective trans-
fer and alleviate negative transfer. To the best of our
knowledge, GTL is the first transfer learning frame-
work which has explored the criteria simultaneously
to achieve the desirable learning goal.

• Many existing matrix factorization models, e.g.,
NMF [21] and Semi-NMF [22], can be readily incor-
porated into the GTL framework to tackle transfer
learning problems. The implemented methods can
be optimized by multiplicative update rules.

• Under the GTL framework, we further propose two
new methods based on NMF [21] and Nonnegative

Matrix Tri-Factorization (NMTF) [23], respectively.
Both methods perform effectively for cross-domain
text and image classification tasks.

• Comprehensive experiments on text (Reuters-21578
and 20-Newsgroups) and image (PIE, USPS, MNIST,
MSRC, and VOC2007) datasets verify the effective-
ness of GTL in real-life applications.

The rest of the paper is organized as follows. The related
works are reviewed in Section 2. In Section 3, we present
the general framework, implement two learning algorithms
using NMF and NMTF, and analyze their computational
complexity. In Section 4, we formally analyze the conver-
gence property of the new algorithms. The experimental
evaluations are discussed in Section 5. Finally, we conclude
the paper in Section 6.

2 RELATED WORK

Transfer learning is established to be effective in the appli-
cations where the training data and test data are obtained
from different resources and with different distributions.
Based on the literature survey [2], most transfer learning
methods can be roughly organized into two categories:
instance re-weighting [24], [25] and feature extraction. Our
approach belongs to the feature extraction category, which
can be roughly reorganized into three subcategories: corre-
spondence learning, distribution matching, and preserva-
tion of data property.

Correspondence Learning: Well-known methods inc-
lude Structural Correspondence Learning (SCL) [26] and
Spectral Feature Alignment (SFA) [4]. These methods first
identify the correspondence among non-pivot features by
modeling their correlations with pivot features that appear
frequently in both domains, and explore the correspon-
dence for subspace learning.

Distribution Matching: Well-known methods are
Maximum Mean Discrepancy Embedding (MMDE) [27],
Transfer Component Analysis (TCA) [15], and Transfer
Subspace Learning (TSL) [28]. These methods aim to
extract a shared feature subspace in which the difference in
distributions across domains can be reduced by minimizing
predefined distance measures.

Property Preservation: A majority of the feature extrac-
tion based transfer learning methods belong to this sub-
category. These methods assume that there exists common
knowledge structure underlying multiple domains, which
can be encoded into common latent factors and explored
as the bridge for knowledge transfer across domains. The
latent factors can be extracted by preserving important
properties of input data, e.g., statistical property [3], [8]–[12],
[29], and geometric structure [13]–[17].

Preservation of Statistical Property: Preserving the statisti-
cal property can be reduced to maximizing the empirical
likelihood, or minimizing the reconstruction error, of the
model parameters to fit input data statistics. Collective
Matrix Factorization (CMF) proposed by Singh et al. [30]
and its tri-factorization variants have been extensively stud-
ied for transfer learning recently [3], [5], [9]–[12]. CMF
simultaneously factorizes multiple matrices with corre-
spondences between rows and columns while enforcing a
set of common latent factors that match rows and columns
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across different matrices. In this process, the common
latent factors are shared as the bridge for knowledge
transfer. Wang et al. [9] proposed Label Propagation (LP)
to share the feature clusters as the bridge for knowl-
edge transfer. Zhuang et al. [3], [10] developed Matrix
Tri-Factorization based Classification (MTrick) to share the
associations between feature clusters and example classes
for knowledge transfer. In essence, all CMF-based methods
are underpinned by maximizing the empirical likelihood
across multiple domains [30]. They only explore the sta-
tistical property of data, and may suffer from underfitting
when data structure is complicated. Different from these
methods, our GTL simultaneously explores both the sta-
tistical property and the geometric structure to discover
more connections between domains, and builds up a better
bridge.

Preservation of Geometric Property: Preserving the geo-
metric structure can be executed by exploring the local
invariance assumption [19], i.e., similar examples or features
should have similar embeddings. Recently, several meth-
ods have been proposed to explore the geometric struc-
ture for transfer learning [13]–[17]. These methods aim
to maximize the consistency between the in-domain geo-
metric structure and out-of-domain discriminating struc-
ture using spectral learning. Contrary to the CMF-based
methods, these methods focus only on the geometric
structure and do not explore the statistical property.
Different from these methods, our GTL explores the
geometric structure underlying both example and fea-
ture spaces, and simultaneously, it explores the statistical
property across domains. Thus, we can take advantage
of both sets of methods to establish robust transfer
learning.

3 GRAPH CO-REGULARIZED TRANSFER
LEARNING FRAMEWORK

In this section, we first define the problem setting and learn-
ing goal for transfer learning. Then we present our Graph
Co-Regularized Transfer Learning (GTL) framework. Based
on the framework, we propose two novel methods using
NMF and NMTF, respectively. Finally, we will analyze the
computational complexity.

3.1 Problem Definition
We focus on transductive transfer learning: rich labeled data
are available in source domains and only unlabeled data are
available in target domains. We study multi-class classifica-
tion on one source and one target domains, which can be
extended to multiple domains.

Denote Dπ the π th domain, where π ∈ � is the domain
index. To distinguish different types of domains, we par-
tition � into source domain indices �s and target domain
indices �t, i.e., � = �s ∪ �t,�s ∩ �t = ∅. The domains
share identical feature space X and label space Y with
|X | = m features and |Y| = c labels, respectively. Denote
Xπ = [xπ

∗1, . . . , xπ∗nπ
] ∈ R

m×nπ the feature-example matrix
of domain Dπ , where xπ

∗i is the ith example in domain Dπ .
Denote Yπ ∈ R

nπ×c the label matrix of source domain Dπ ,
where yπ

ij = 1 if xπ
∗i is assigned to class j, and yπ

ij = 0 other-
wise. Frequently used notations are summarized in Table 1.

TABLE 1
Frequently Used Notations and Their Descriptions

Problem 1 (Learning Goal). Given domains {Dπ }π∈�, learn
a multi-class classifier f :X �→ Y with low error rate on
target domains {Dπ }π∈�t , by simultaneously 1) preserving
the statistical property across domains to facilitate knowledge
transfer, and 2) preserving the geometric structure in each
domain to alleviate negative transfer.

In this paper, we propose a general framework, referred
to as Graph Co-Regularized Transfer Learning (GTL), to
achieve the learning goal. In GTL , we adopt a regular-
ized matrix factorization technique. We assume that the input
domains can share some common latent factors. We extract
the common factors by collective matrix factorization, which
can preserve the statistical property of the input data across
domains. Simultaneously, we refine the common factors by
graph co-regularization, which can preserve the geometric
property of the input data in each domain. In this way,
the learning model is made more robust to the domain
difference. Our proposed justifications are two-folds: 1) if
the statistical and geometric properties are consistent across
domains, they can reinforce learning each other to enhance
knowledge transfer; 2) otherwise, the in-domain geometric
property will dominate learning task within each domain
to alleviate negative transfer.

3.2 General Framework
The general GTL framework integrates two learning objec-
tives into a unified optimization problem: collective matrix
factorization and graph co-regularization.

3.2.1 Collective Matrix Factorization
First, we extract the latent factors by collective matrix fac-
torization [30], through which data distributions between
domains can be drawn close. We aim to preserve the
statistical property of data across domains.

Collective Matrix Factorization: The latent factors in
each domain Dπ can be extracted by nonnegative matrix
factorization (NMF) model [21], [22]. In NMF, a feature-
example matrix Xπ is decomposed into two low-rank non-
negative matrices Uπ and Vπ , such that the reconstruction
error of matrix Xπ is minimized and the statistical property
of input data is preserved. NMF amounts to the following
optimization problem:

min
Uπ ,Vπ≥0

L
(

Xπ , h
(

Uπ VT
π

))
, (1)

where h is the prediction link and L is the loss func-
tion. Uπ = [uπ

∗1, . . . , uπ∗c] ∈ R
m×c is the feature cluster

matrix, with each uπ
∗i representing a feature cluster; and

Vπ = [vπ
∗1, . . . , vπ∗c] ∈ R

nπ×c is the example class matrix,
with each vπ

∗i representing an example class. Intuitively, Uπ
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and Vπ are the co-clustering results for Xπ on features
and examples, respectively. According to Ding et al. [20],
NMF models are equivalent to maximizing the empirical
likelihood of the input data.

Given multiple domains with intrinsic correlations, we
may improve classification accuracy by exploiting supervi-
sion information from labeled source domains and classify-
ing unlabeled target domains, by sharing the common factors
underlying these domains. This is the nature of transfer
learning. Singh et al. [30] extend basic MF to simultaneously
factorize multiple relevant matrices, leading to collective
matrix factorization (CMF)

min
Uπ∈Cu,Vπ∈Cv

∑
π∈� L

(
Xπ , h

(
Uπ VT

π

))
, (2)

where Cu and Cv are proper constraints (e.g., nonnega-
tivity, orthogonality) on the factor matrices Uπ and Vπ ,
respectively. The key idea of CMF is to share the com-
mon factors across multiple matrices. In the literature, the
feature clusters {Uπ }π∈� are usually shared across multi-
ple domains to facilitate transfer learning [8], [9], [31], i.e.,
Cu � {Uπ ≡ U:∀π ∈ �}. In this way, we can extract the
common factors for knowledge transfer by preserving the
statistical property of data.

Collective Matrix Tri-Factorization: Similarly, the latent
factors can also be extracted by nonnegative matrix tri-
factorization (NMTF) model [23]. In NMTF, the feature-
example matrix Xπ is decomposed into three low-rank
nonnegative matrices Uπ , Hπ , and Vπ

min
Uπ ,Hπ ,Vπ≥0

L
(

Xπ , h
(

Uπ Hπ VT
π

))
. (3)

Hπ ∈ R
c×c is the association between feature clusters Uπ and

example classes Vπ and can give a condensed view of Xπ .
Similar to CMF, we extend basic NMTF to simultaneously
factorize multiple relevant matrices, which leads to collective
matrix tri-factorization (CMTF)

min
Uπ∈Cu,Hπ∈Ch,Vπ∈Cv

∑
π∈� L

(
Xπ , h

(
Uπ Hπ VT

π

))
. (4)

Through CMTF, the feature clusters are usually shared
across domains to facilitate transfer learning [9], [29], i.e.,
Cu

�= {Uπ ≡ U:π ∈ �}. Similarly, the associations can also
be shared across domains to facilitate stable transfer learn-
ing [3], [10], i.e., Ch

�= {Hπ ≡ H:π ∈ �}. We study both CMF
and CMTF for transfer learning.

3.2.2 Graph Co-Regularization
Secondly, we refine the latent factors by graph co-
regularization, through which the data distribution in each
domain can be respected. We aim to preserve the intrinsic
geometric property of data in each domain.

Example Graph Regularization: From the geometric
perspective, the data points may be sampled from a distri-
bution supported by a low-dimensional manifold embed-
ded in a high-dimensional space [19], [32]. Preserving this
geometric structure can make the learning model carefully
respect the domain-specific data distribution and substan-
tially alleviate the negative transfer issue. By the local
invariance assumption [33], if two examples xπ

∗i, xπ
∗j are close

in the intrinsic geometry of the data distribution underlying

domain Dπ , then their embeddings vπ
i∗ and vπ

j∗ should also
be close. The geometric structure can be effectively encoded
by a p-nearest neighbor graph on the involved scatter of
data points [19]. Consider an example graph Gv

π with nπ

vertices each representing a data point in domain Dπ , and
define the affinity matrix of Gv

π as

(
Wv

π

)
ij =

{
sim

(
xπ
∗i, xπ
∗j
)

, if xπ
∗i ∈ Np

(
xπ
∗j
)
∨ xπ
∗j ∈ Np

(
xπ
∗i
)

0, otherwise,
(5)

where sim(·, ·) is a proper similarity function, Np
(
xπ
∗i
)

is the
set of p-nearest neighbors of the example xπ

∗i.
Recall that the low-dimensional embedding of example

xπ
∗i extracted by CMF is vπ

i∗ = [vπ
i1, . . . , vπ

ic]. We use loss
function � to measure the closeness between each pair of
embeddings vπ

i∗ and vπ
j∗, i.e., �

(
vπ

i∗, vπ
j∗
)

. According to Cai
et al. [19], preserving the geometric structure in domain
Dπ with respect to graph Gv

π is achieved by the following
example graph regularization

R (Vπ ) = 1
2

∑nπ

i,j=1
�
(

vπ
i∗, vπ

j∗
) (

Wv
π

)
ij. (6)

Feature Graph Regularization: Considering duality
between features and examples, the features are also
sampled from a distribution supported by another low-
dimensional manifold [34]. By the local invariance assump-
tion [33], if two features xπ

i∗, xπ
j∗ are close in the intrinsic

geometry of the data distribution underlying domain Dπ ,
then their embeddings uπ

i∗ and uπ
j∗ should also be close. As

the example graph, consider a feature graph Gu
π with m ver-

tices each representing a feature in domain Dπ , and define
the affinity matrix of Gu

π as

(
Wu

π

)
ij =

{
sim

(
xπ

i∗, xπ
j∗
)

, if xπ
i∗ ∈ Np

(
xπ

j∗
)
∨ xπ

j∗ ∈ Np
(
xπ

i∗
)

0, otherwise,
(7)

where sim(·, ·) is a proper similarity function, Np
(
xπ

i∗
)

is the
set of p-nearest neighbors of the feature xπ

i∗.
The low-dimensional embedding of feature xπ

i∗ extracted
by CMF is uπ

i∗ = [uπ
i1, . . . , uπ

ic]. Similar to the example
graph regularization, preserving the geometric structure in
domain Dπ with respect to graph Gu

π is achieved by the
following feature graph regularization

R (Uπ ) = 1
2

∑m

i,j=1
�
(

uπ
i∗, uπ

j∗
) (

Wu
π

)
ij. (8)

We refer to the graph regularization terms in
Equations (6) and (8) as graph co-regularization, since
they are to preserve the geometric structure on examples
and features simultaneously. We will use them to refine
the latent factors for alleviating negative transfer.

3.2.3 Optimization Framework
To further boost the performance for cross-domain classi-
fication, the two learning objectives should be considered
together. The reasons are: 1) with collective matrix factor-
ization, the common latent factors are extracted through
which knowledge can be transferred between domains;
2) with graph co-regularization, the geometric structure
in each domain is preserved so that negative transfer
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can be substantially alleviated. Furthermore, collective
matrix factorization and graph co-regularization can be
performed simultaneously to enjoy the intrinsic mutual
reinforcement learning: 1) collective matrix factorization
can extract a subspace with statistically-sufficient embed-
dings for all the examples and features, and 2) graph
co-regularization can enrich the subspace with discrimi-
nating geometric structure for better classification perfor-
mance. Therefore, we should integrate these two learn-
ing objectives seamlessly into unified GTL optimization
framework

min
Uπ∈Cu,Vπ∈Cv

∑
π∈�

[
L

(
Xπ , h

(
Uπ VT

π

))
+ λR (Uπ )+ γR (Vπ )

]

s.t. Cu
�= {Uπ ≡ U:π ∈ �} , Cv

�= {Vπ ≡ Yπ :π ∈ �s} ,
(9)

where λ is the feature graph regularization parame-
ter, and γ is the example graph regularization param-
eter. Since true labels are available in the source
domains, we incorporate them in the optimization frame-
work by Cv � {Vπ ≡ Yπ :∀π ∈ �s}. To facilitate trans-
fer learning, we follow [8], [30], [31] and share the
feature clusters across domains, i.e., Cu � {Uπ ≡
U:∀π ∈ �}, through which supervision information can
be propagated from the source domains to the target
domains.

Similarly, the GTL framework can also be formulated by
using collective matrix tri-factorization (CMTF)

min
Hπ∈Ch,Vπ∈Cv

∑
π∈�

[
L

(
Xπ , h

(
Uπ Hπ VT

π

))

+λR (Uπ )+ γR (Vπ )
]

s.t. Ch
�= {Hπ ≡ H:π ∈ �} , Cv

�= {Vπ ≡ Yπ :π ∈ �s} . (10)

To facilitate transfer learning, we share the associations
across domains as [3], [10], i.e., Ch � {Hπ ≡ H:∀π ∈ �}.
With the optimization results, the label for example xπ

∗i in
target domain Dπ can be predicted by

f
(
xπ
∗i
) = arg maxj (Vπ )ij. (11)

The GTL framework is formulated to be general, in
which we can choose various prediction link h, loss func-
tions L and �, similarity function sim, constraints Cu and
Cv. The widely adopted options are as follows:

• h can be either the identity function or the logistic
function, i.e., h(X) = X or h

(
Xij

) = 1
1+e
−Xij

.

• L can be either the sum of squares loss or the matrix
divergence [19], i.e., L(X, X̂) = ‖X−X̂‖2F or L

(
X, X̂

)
=

∑
ij

(
Xij log

Xij

X̂ij
− Xij + X̂ij

)
.

• � can be either the Euclidian distance or the gener-
alized KL-divergence [19], i.e., �(x, x̂) = ‖x − x̂‖22 or
�
(
x, x̂

) =∑
i

(
xi log xi

x̂i
− xi + x̂i

)
.

• sim can be either the cosine similarity or the heat
kernel weighting [19], i.e., sim(x, x̂) = cos(x, x̂)

or sim
(
x, x̂

) = exp
(
−‖x−x̂‖2

2
β2

)
, where β is the

bandwidth parameter of the heat kernel.

• Cu and Cv can incorporate nonnegative constraint
(NMF), orthogonal constraint (SVD), prob-
abilistic constraint (PLSA) [20], or sparse
constraint.

Based on specific applications, we can choose the most
appropriate configuration to achieve optimal performances.

3.3 Learning Algorithms
We extend standard algorithms NMF [21] and NMTF [23]
under the GTL framework using proper settings. We choose
linear models, i.e., h(X) = X, L(X, X̂) = ‖X − X̂‖2F,
�(x, x̂) = ‖x − x̂‖22, and sim(x, x̂) = cos(x, x̂). We further
impose approximate orthogonal constraints for Cv, i.e., Cv ⊃{∥∥VT

π Vπ − I
∥∥2

F ≤ ε:∀π ∈ �
}

, where ε is a small nonnegative
constant. GTL will require the orthogonality constraints to
combat the trivial solution problem.

3.3.1 GTL Using NMF
Using nonnegative matrix factorization (NMF) [21] as base
model, the framework in (9) is reduced to GTL2

O2 =
∑

π∈�
∥∥∥Xπ −UVT

π

∥∥∥
2

F
+ σ

2

∑
π∈�

∥∥∥VT
π Vπ − I

∥∥∥
2

F

+ λ
∑

π∈� tr
(

UTLu
π U

)
+ γ

∑
π∈� tr

(
VT

π Lv
π Vπ

)
,

(12)

where σ is the shrinkage regularization parameter; Lu
π and

Lv
π are the graph Laplacian matrices which are computed

as Lu
π = Du

π − Wu
π , Lv

π = Dv
π − Wv

π ; and Du
π and Dv

π

are diagonal degree matrices with each item
(
Du

π

)
ii =∑m

j=1
(
Wu

π

)
ij,

(
Dv

π

)
ii =

∑nπ

j=1

(
Wv

π

)
ij. Based on the shrinkage

method, we can approximately satisfy the orthogonality
constraints for Vπ ,∀π ∈ � by preventing the second
term from getting too large. Due to the Lagrange multi-
plier method, given any ε, there is a proper σ such that∥∥VT

π Vπ − I
∥∥2

F ≤ ε is satisfied.
Remark on the Trivial Solution Problem: It is very

important to note that, existing graph regularized NMF
methods [19], [32], [34] may suffer from the trivial solution
problem [35]: when γ →∞, the fourth term dominate the
objective, with Equation (12) reduced to

O′2 =
∑
π∈�

tr
(

VT
π Lv

π Vπ

)
=

∑
π∈�

c∑
k=1

vπT
∗k Lv

π vπ
∗k. (13)

Equation (13) is decomposed into c |�| independent sub-
problems: O′′2 = vπT

∗k Lv
π vπ
∗k. Each subproblem gets the same

solution up to a scale, i.e., vπ
∗1 ∝ . . . ∝ vπ∗c. Hence the

class assignments by Vπ tend to assign all examples to
one class, which is misspecified. Gu et al. [35] imposed a
normalized-cut style constraint on Vπ and then solved a
constrained optimization problem using the Lagrange mul-
tiplier method. However, this method suffers from unstable
convergence performance. By satisfying the orthogonality
constraints with a shrinkage methodology, GTL can fully
address the trivial solution problem and can obtain stable
convergence performance. Since typically λ ∈ [0, 1] � ∞,
we need not impose the orthogonal constraints for Cu.

The optimization problem in Equation (12) can be solved
by an alternating optimization procedure, as stated in the
following theorem. The detailed theoretical analysis of the
theorem is presented in Section 4.
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Theorem 1. Updating U, {Vπ }π∈� sequentially by Equations
(14)∼(15) will monotonically decrease the objective function
in Equation (12) until convergence.

U← U�
[∑

π∈�
(
Xπ Vπ + λWu

π U
)]

[∑
π∈�

(
UVT

π Vπ + λDu
π U

)] (14)

Vπ ← Vπ �
[
XT

π U+ γ Wv
π Vπ + σVπ

]
[
Vπ UTU+ γ Dv

π Vπ + σVπ VT
π Vπ

] , (15)

where � and [·]
[·] denote element-wise product and division

respectively.

The complete learning procedure is summarized in
Algorithm 1. The source domains are labeled, so we keep
{Vπ ≡ Yπ :π ∈ �s} throughout iteration. Since the optimiza-
tion involves iterative update rules, it is risky that the
procedure might get stuck in poor local optima. Therefore,
we initialize the classes {Vπ }π∈�t of the target data by
applying the Logistic Regression (LR) classifier trained on
the labeled source data {Xπ , Yπ }π∈�s .

3.3.2 GTL Using NMTF
Using nonnegative matrix tri-factorization (NMTF) [23] as
base model, framework (10) is reduced to GTL3

O3 =
∑

π∈�
∥∥∥Xπ −Uπ HVT

π

∥∥∥
2

F
+ σ

2

∑
π∈�

∥∥∥VT
π Vπ − I

∥∥∥
2

F

+λ
∑

π∈� tr
(

UT
π Lu

π Uπ

)
+ γ

∑
π∈� tr

(
VT

π Lv
π Vπ

)
.

(16)

The problem in Equation (16) can also be solved by an alter-
nating optimization procedure, as stated in the following
theorem. The theoretical analysis is similar to the NMF ver-
sion and thus is omitted. The complete learning procedure
is summarized in Algorithm 2.

Theorem 2. Updating {Uπ }π∈�, {Vπ }π∈�t , H sequentially by
Equations (17)∼(19) will monotonically decrease the objective
function in Equation (16) until convergence.

Uπ ← Uπ �
[
Xπ Vπ HT + λWu

π Uπ

]
[
Uπ HVT

π Vπ HT + λDu
π Uπ

] (17)

Vπ ← Vπ �
[
XT

π Uπ H+ γ Wv
π Vπ + σVπ

]
[
Vπ HTUT

π Uπ H+γ Dv
π Vπ+σVπ VT

π Vπ

] (18)

H← H�
[∑

π∈� UT
π Xπ Vπ

]
[∑

π∈� UT
π Uπ HVT

π Vπ

] , (19)

where � and [·]
[·] denote element-wise product and

division respectively.

Remark on GTL2 vs. GTL3: Firstly, GTL2 is at the end
of “over-transfer”. It shares the feature clusters U ∈ R

m×c,
which are a large amount of parameters and can encode
sufficient knowledge structure to enable transfer. However,
it may suffer from negative transfer, i.e., the excessive
transferred knowledge may be highly inconsistent with the
target domain cluster structure. In this scenario, graph co-
regularization can preserve the target geometric structure
to combat negative transfer.

On contrary, GTL3 is at the end of “under-transfer”.
It shares the associations H ∈ R

c×c, which are a small
amount of parameters and can perform robustly to sub-
stantial domain difference. However, it may suffer from
ineffective transfer, i.e., no sufficient knowledge can be trans-
ferred across domains to improve the target tasks. In this
scenario, graph co-regularization can facilitate reinforce-
ment learning between different properties of input data
to enhance effective transfer.

3.4 Computational Complexity
The computational cost consists of three parts as
follows: O

(∑
π∈� Tc

(
mnπ +m2 + n2

π

))
for computing

multiplicative update rules; O
(∑

π∈�
(
mn2

π +m2nπ

))
for

building nearest neighbor graphs; O
(∑

π∈� mnπ

)
for

others. In all, the overall computational complexity is
O

(∑
π∈� Tc

(
mnπ +m2 + n2

π

)+m2nπ +mn2
π

)
, which can be

greatly reduced if the input data are sparse.

4 THEORETICAL ANALYSIS

4.1 Optimization Derivation
We derive solutions to the GTL optimization problem in
Equation (12) using the constrained optimization theory.
Specifically, we will optimize one variable and compute its
update rule while fixing the rest of variables. The procedure
repeats until convergence.

Let � and �π be the Lagrange multipliers for the non-
negative constraints U ≥ 0 and Vπ ≥ 0, ∀π ∈ � respectively.
The Lagrange function is formulated as

L = O2 + tr
(
�UT

)
+

∑
π∈� tr

(
�π VT

π

)
.
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The partial derivatives of L w.r.t. U and Vπ are

∂L
∂U
= −2

∑
π∈� Xπ Vπ + 2

∑
π∈� UVT

π Vπ

+2
∑

π∈� λDu
π U− 2

∑
π∈� λWu

π U+�

∂L
∂Vπ

= −2XT
π U+ 2Vπ UTU+ 2γ Dv

π Vπ

−2γ Wv
π Vπ + 2σVπ VT

π Vπ − 2σVπ +�π.

Using the Karush-Kuhn-Tucker (KKT) complementarity
conditions ��U = 0, �π �Vπ = 0, we can obtain

∂L
∂U
�U =

(∑
π∈� UVT

π Vπ +
∑

π∈� λDu
π U

)
�U

−
(∑

π∈� Xπ Vπ +
∑

π∈� λWu
π U

)
�U = 0

∂L
∂Vπ

�Vπ =
(

Vπ UTU+ γ Dv
π Vπ + σVπ VT

π Vπ

)
�Vπ

−
(

XT
π U+ γ Wv

π Vπ + σVπ

)
�Vπ = 0.

These lead to the update rules in Equations (14)∼(15).

4.2 Convergence Analysis
We use the auxiliary function approach [19], [21] to ana-
lyze the convergence aspect of Theorem 1. For clarity,
we will only prove that the objective function O2 in
Equation (12) is non-increasing under the update rule for
Vπ in Equation (15). The convergence property of the other
update rules can be proved similarly. First, we introduce the
definition of auxiliary function.

Definition 1. [21] A(z, z̃) is an auxiliary function for F(z) if
the conditions

A(z, z̃) ≥ F(z) and A(z, z) = F(z)

are satisfied for any given z, z̃.

Lemma 1. [21] If A is an auxiliary function for F, then F is
non-increasing under the update

z(t+1) = arg minz A(z, z(t))

Proof.

F(z(t+1)) ≤ A(z(t+1), z(t)) ≤ A(z(t), z(t)) = F(z(t)). �

In the sequel, we will show that Equation (15) is exactly
the update rule in Lemma 1 with a proper auxiliary func-
tion. For any element vij in Vπ , we use Fij to denote the
part of O2 which is only relevant to vij. The corresponding
first-order and second-order derivatives of Fij with respect
to vij are computed as

F′ij =
(

∂O2

∂Vπ

)

ij

F′′ij = 2
(

UTU
)

jj
+ 2γ

(
Dv

π −Wv
π

)
ii

+2σ

((
VT

π Vπ

)
jj
+ v2

jj − 1
)

.

Lemma 2. Function

A
(

v, v(t)
ij

)
= Fij

(
v(t)

ij

)
+ F′ij

(
v(t)

ij

) (
v− v(t)

ij

)

+
(
Vπ UTU+ γ Dv

π Vπ + σVπ VT
π Vπ

)
ij

v(t)
ij

(
v− v(t)

ij

)2

is a proper auxiliary function for Fij(v).

Proof. It is straight-forward that A (v, v) = Fij (v), and thus

we only need verify that A
(

v, v(t)
ij

)
≥ Fij (v). To achieve

this, we expand Fij(v) using Taylor series

Fij (v) = Fij

(
v(t)

ij

)
+ F′ij

(
v(t)

ij

) (
v− v(t)

ij

)
+

(
v− v(t)

ij

)2 ·
((

UTU
)

jj + γ
(
Dv

π −Wv
π

)
ii + σ

((
VT

π Vπ

)
jj + v2

jj − 1
))

.

Due to orthogonality, 1 ≈ (
VT

π Vπ

)
jj =

∑
i v2

ij � v2
jj. By

algebra manipulations, we have three inequalities:
(

Vπ UTU
)

ij
=

∑
l
v(t)

il

(
UTU

)
lj
≥ v(t)

ij

(
UTU

)
jj(

Dv
π Vπ

)
ij =

∑
l

(
Dv

π

)
ilv

(t)
lj ≥ v(t)

ij

(
Dv

π −Wv
π

)
ii(

Vπ VT
π Vπ

)
ij
=

∑
l
v(t)

il

(
VT

π Vπ

)
lj
≥ v(t)

ij

(
VT

π Vπ

)
jj

≥ v(t)
ij

((
VT

π Vπ

)
jj
+ v2

jj − 1
)

.

By comparing the above three inequalities collectively,
we have A

(
v, v(t)

ij

)
≥ Fij (v), and Lemma 2 holds.

Proof.•of Theorem 1. Based on Lemmas 1 and 2, the
update rule for Vπ can be obtained by minimizing

A
(

v(t+1)

ij , v(t)
ij

)
. Setting

∂A
(

v(t+1)

ij ,v(t)
ij

)

∂v(t+1)

ij

= 0, we obtain

v(t+1)

ij = v(t)
ij −

v(t)
ij F′ij

(
v(t)

ij

)

2
(
Vπ UTU+ γ Dv

π Vπ + σVπ VT
π Vπ

)
ij

= v(t)
ij

(
XT

π U+ γ Wv
π Vπ + σVπ

)
ij(

Vπ UTU+ γ Dv
π Vπ + σVπ VT

π Vπ

)
ij

This update rule is consistent with Equation (15). For
each iteration of updating Vπ , we have O2

(
V(0)

π

)
=

A
(

V(0)
π , V(0)

π

)
≥ A

(
V(1)

π , V(0)
π

)
≥ A

(
V(1)

π , V(1)
π

)
=

O2

(
V(1)

π

)
≥ . . . ≥ O2

(
V(T)

π

)
. Therefore, O2(Vπ ) is mono-

tonically decreasing during iterations. Since the objective
function in Equation (12) is lower bounded by 0, the
convergence aspect of Theorem 1 is proved.

5 EXPERIMENTS

In this section, we conduct extensive experiments on two
real-world applications (i.e., text classification and image
recognition) to evaluate the GTL approaches. In the sequel,
we will use GTL to refer to both GTL2 and GTL3 for the
ease of description.

5.1 Data Preparation
5.1.1 Text Datasets
The 222 cross-domain text datasets are generated from 20-
Newsgroups and Reuters-21578, which are two benchmark
text corpora widely used for evaluating transfer learning
algorithms [3], [8], [13], [15], [36].

20-Newsgroups1 has approximately 20,000 documents
distributed evenly in 20 different subcategories. The corpus

1. http://people.csail.mit.edu/jrennie/20newsgroups
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TABLE 2
Top Categories and Subcategories in 20-Newsgroups

contains four top categories comp, rec, sci and talk. Each top
category has four subcategories, which are listed in Table 2.
In the experiments, we can construct 6 dataset groups for
binary classification by randomly selecting two top cate-
gories (one for positive and the other one for negative)
from the four top categories. The 6 dataset groups are comp
vs rec, comp vs sci, comp vs talk, rec vs sci, rec vs talk, and
sci vs talk. Similar to the approach in [8], we set up one
dataset (including source domain and target domain) for
cross-domain classification as follows. For each pair of top
categories P and Q (e.g., P for positive and Q for negative),
their four sub-categories are denoted by P1, P2, P3, P4 and
Q1, Q2, Q3, Q4, respectively. We randomly select (without
replacement) two subcategories from P (e.g., P1 and P2) and
two subcategories from Q (e.g., Q1 and Q2) to form a source
domain, then the remaining subcategories in P and Q (i.e.,
P3, P4 and Q3, Q4) are selected to form a target domain.
This dataset construction strategy ensures that the domains
of labeled and unlabeled data are related, since they are
under the same top categories. Besides, the domains are
also ensured to be different, since they are drawn from dif-
ferent subcategories. In this way, for each dataset group P
vs Q, we can generate C2

4 · C2
4 = 36 datasets. Clearly, for

each example in the generated dataset group, its class label
is either P or Q. In total, we can generate 6 dataset groups
consisting of 6 · 36 = 216 datasets. For fair comparison, the
216 datasets are constructed using a preprocessed version
of 20-Newsgroups [3], which contains 25,804 features and
15,033 documents, with each document weighted by term
frequency-inverse document frequency (TF-IDF).

Reuters-215782 has three top categories orgs, people, and
place. Using the same strategy, we can construct 3 cross-
domain text datasets orgs vs people, orgs vs place and people
vs place. We switch the source/target pair to get another
3 datasets people vs orgs, place vs orgs and place vs people.
For fair comparison, we use the preprocessed version of
Reuters-21578 studied in [37].

5.1.2 Image Datasets
USPS, MNIST, PIE, MSRC, and VOC2007 (see Fig. 1 and
Table 3) are five handwritten digits/face/photo datasets
broadly adopted in compute vision literature.

2. http://www.daviddlewis.com/resources/testcollections
/reuters21578

Fig. 1. Examples of PIE, USPS, MNIST, MSRC, and VOC.

TABLE 3
Statistics of the Six Benchmark Image Datasets

USPS3 dataset composes of 7,291 training images and
2,007 test images of size 16× 16.

MNIST4 dataset has a training set of 60,000 examples
and a test set of 10,000 examples of size 28× 28.

From Fig. 1, we see that USPS and MNIST follow differ-
ent distributions. They share 10 semantic classes, with each
corresponding to one digit. We construct one dataset USPS
vs MNIST by randomly sampling 1,800 images in USPS
to form the source domain, and sampling 2,000 images
in MNIST to form the target domain. Then we switch the
source/target pair to get another dataset MNIST vs USPS.
We uniformly rescale all images to size 16 × 16, and rep-
resent each image by a 256-dimensional vector encoding
the gray-scale values of all pixels. In this way, the source
and target domain are ensured to share the same feature
space.

PIE5, standing for “Pose, Illumination, Expression”, is a
benchmark face database. It has 68 individuals with 41,368
face images sized 32× 32. The images were captured by 13
synchronized cameras and 21 flashes, under varying poses,
illuminations, and expressions.

In our experiments, we simply adopt the preprocessed
versions of PIE6, i.e., PIE1 [19] and PIE2 [38], which are
generated by randomly sampling the face images from
the near-frontal poses (C27) under different lighting and
illumination conditions. We construct one dataset PIE1 vs
PIE2 by selecting all 2,856 images in PIE1 to form the
source domain, and all 3,329 images in PIE2 to form
the target domain. We switch source/target pair to get
another dataset PIE2 vs PIE1. Thus the source and target
domains are guaranteed to follow different distributions in
the same feature space, due to variations in lighting and
illumination.

MSRC7 dataset is provided by the computer vision
group at Microsoft Research Cambridge, which contains
4,323 images labeled by 18 classes.

VOC20078 dataset (the training/validation subset) con-
tains 5,011 images annotated with 20 concepts.

3. http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
4. http://yann.lecun.com/exdb/mnist
5. http://vasc.ri.cmu.edu/idb/html/face
6. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
7. http://research.microsoft.com/en-us/projects

/objectclassrecognition
8. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
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TABLE 4
Classification Accuracy (%) on 6 Cross-Domain Dataset Groups (216 Datasets) Generated from 20-Newsgroups

From Fig. 1 we see that MSRC and VOC follow different
distributions, since MSRC is from standard images for
scientific studies, while VOC2007 is from digital photos
in Flickr9. They share the following 6 semantic classes:
“aeroplane”, “bicycle”, “bird”, “car”, “cow”, “sheep”. We
construct one dataset MSRC vs VOC by selecting all 1,269
images in MSRC to form the source domain, and all 1,530
images in VOC2007 to form the target domain. We switch
source/target pair to get another dataset VOC vs MSRC.
We then uniformly rescale all images to be 256 pixels in
length, and extract 128-dimensional dense SIFT (DSIFT) [39]
features with grid size of 5 pixels. A 240-dimensional code-
book is created, where K-means clustering is used to obtain
the codewords. Thus the source and target domains are
ensured to share the same feature space.

5.2 Experimental Setup
5.2.1 Baseline Methods
We compare GTL with nine state-of-the-art methods for
cross-domain text and image classification tasks.

• Logistic Regression (LR)
• Support Vector Machine (SVM)
• Laplacian Support Vector Machine (LapSVM) [40]
• Spectral Feature Alignment (SFA) [4]
• Transfer Component Analysis (TCA) [15]
• Collective Matrix Factorization (CMF) [30]
• Label Propagation (LP) [9]
• Matrix Tri-Factorization Clustering (MTrick) [10]
• Our Graph Co-Regularized Collective Matrix Tri-

Factorization (GCMF) in the preliminary work [1]
Specifically, CMF and GTL2 adopt matrix factorization; LP,
MTrick, GCMF, and GTL3 adopt matrix tri-factorization.
Our GCMF and GTL approaches distinguish from the other
methods by imposing graph co-regularization on collective
matrix (tri-) factorizations.

5.2.2 Implementation Details
Following [2], [10], [15], LR and SVM are trained on the
labeled source data, and then tested on the unlabeled target
data; SFA and TCA are run on all data as a dimensionality
reduction procedure, then an LR classifier is trained on the
source data to classify the target data; LapSVM, CMF, LP,
MTrick, GCMF, and GTL are applied in a transductive way,
i.e., trained on all data and then tested on unlabeled target
data.

9. http://www.flickr.com

Under the experimental setup, it is impossible to
automatically tune the optimal parameters for the tar-
get classifier using cross validation, since there are no
labeled data in target domains. Thus, we evaluate the
nine baseline methods on our datasets by empirically
searching the parameter space for the optimal parame-
ter settings, and report the best results. For LR10 and
SVM11, we set the trade-off parameter C by searching
C ∈ {0.1, 0.5, 1, 5, 10, 50, 100}. For LapSVM12, we set the
regularization parameters γA and γI by searching γA, γI ∈
{0.01, 0.05, 0.1, 0.5, 1, 5, 10}. For SFA, TCA, LP, MTrick, and
GCMF, we set the optimal subspace dimension k by search-
ing k ∈ {4, 8, 16, 32, 64, 128, 256}.

The GTL approaches has four model parameters: #near-
est neighbors p, regularization parameters λ, γ , and σ .
In the coming sections, we provide empirical analysis on
parameter sensitivity, which validates that GTL can achieve
stable performance under a wide range of parameter val-
ues. When comparing with the baseline methods, we fix
p = 10, γ = 10, and σ = 100, and use these settings:
1) λ = 0 for text datasets, and 2) λ = 0.1 for image
datasets. We set #iterations as T = 100 and run GTL
10 repeated times to remove any randomness caused by
initialization.

We use the classification Accuracy on the test data (unla-
beled target data) as the evaluation metric, since it is widely
adopted in the literature [4], [13], [15], [36]

Accuracy =
∣∣x:x ∈⋃

π∈�t
Dπ ∧ f (x) = y (x)

∣∣
∣∣x:x ∈⋃

π∈�t
Dπ

∣∣ , (20)

where y(x) is the groundtruth label of x while f (x) is the
label predicted by the classification algorithm.

5.3 Experimental Results
In this section, we compare GTL approaches with the
baseline methods in terms of classification accuracy.

5.3.1 Cross-Domain Text Classification
As 20-Newsgroups and Reuters-21578 are different in hier-
archical structure, we report the results separately.

20-Newsgroups: The average classification accuracy of
GTL and the nine baseline methods on the 6 cross-domain
dataset groups (216 datasets) are illustrated in Table 4.
All the detailed results of the 6 dataset groups are listed
through Figs. 2(a)∼2(f). Each of these six figures contains

10. http://www.csie.ntu.edu.tw/~cjlin/liblinear
11. http://www.csie.ntu.edu.tw/~cjlin/libsvm
12. http://vikas.sindhwani.org/manifoldregularization.html
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Classification accuracy of LR, LapSVM, SFA, TCA, CMF, MTrick, and GTL2 on 20-Newsgroups datasets: (a) comp vs rec. (b) comp vs sci.
(c) comp vs talk. (d) rec vs sci. (e) rec vs talk. (f) sci vs talk.

the results on the 36 datasets in the corresponding group.
The 36 datasets are sorted by an increasing order of
the classification accuracy obtained by Logistic Regression
(LR). Therefore, the x-axis in each figure essentially indi-
cates the degree of difficulty in cross-domain knowledge
transfer. From these figures, we can make the following
observations.

GTL can achieve much better performance than the first
eight baseline methods (excluding GCMF) with statistical
significance, and GTL2 achieves slightly better performance
than GTL3. The average classification accuracy of GTL2 on
the 216 datasets is 96.25%. The performance improvement
is 4.19% compared to the best baseline method MTrick,
which means a significant error reduction of 52.78%.
Furthermore, from the results averaged by 10 repeated runs
in Table 4, we see that the deviation is less than 0.01%,
which validates that GTL performs stably to its random
initialization.

Secondly, we observe that all the transfer learning
methods can achieve better classification accuracy than
the standard learning methods. A major limitation of
existing standard learning methods is that they treat
the data from different domains as if they were drawn
from a homogenous distribution. In reality, the identical-
distribution assumption does not hold in the cross-domain
learning problems, and thus results in their unsatisfactory
performance. It is important to notice that, the state-of-
the-art semi-supervised learning method LapSVM cannot
perform better than LR and SVM. Although LapSVM can
explore the target data in a transductive way, it does not
extract common factors to bridge domains and may overfit
the target data when the domain difference is significantly
large.

Thirdly, we notice that GTL has significantly
outperformed SFA, TCA, LP, CMF, and MTrick, which
are state-of-the-art transfer learning methods based on
feature transformation. A major limitation of prior feature
transformation based transfer learning methods is that

they may be prone to overfitting the target data, due to
their incapability to negotiate between the cross-domain
statistical property and the in-domain geometric structure.
In real-world applications, different properties from differ-
ent domains are likely to be inconsistent with each other,
resulting in a higher risk of negative transfer. Currently,
GTL has alleviated these limitations and can achieve much
better results.

Lastly, GTL often performs much more robustly than all
the baseline methods under different degrees of difficulty
in cross-domain knowledge transfer. This can be observed
from Figs. 2(a)∼2(f), where each baseline method has many
weak datasets while GTL performs effectively and stably on
almost all datasets.

Reuters-21578: The classification accuracy of GTL and
the baseline methods on the 6 datasets generated from
Reuters-21578 are illustrated in Fig. 3(a). We observe that
GTL has outperformed, or achieved comparable perfor-
mance than the baseline methods.

We notice that, Reuters-21578 is more challenging than
20-Newsgroups, since each of its top categories consists of
many subcategories, i.e., clusters or subclasses. Therefore,
it is more difficult to propagate the supervision informa-
tion between domains for knowledge transfer. This reason
can explain the unsatisfactory performance obtained by the
baseline methods.

GTL tackles the above limitation by simultaneously
1) extracting some common factors to propagate supervi-
sion information across domains, and 2) refining the latent
factors in each domain to respect domain-specific geomet-
ric structure. Therefore, GTL can perform better on difficult
datasets with many subclasses.

5.3.2 Cross-Domain Image Classification
The average classification accuracy of GTL2, GTL3 and the
six baseline methods on the six image datasets is illus-
trated in Fig. 3(b). In this experiment, SFA is not compared
since it cannot handle non-sparse image data, LapSVM is
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(a) (b)

Fig. 3. Classification accuracy of LR, SFA, TCA, LP, CMF, MTrick, GCMF, and GTL on text and image datasets: (a) Reuters-21578. (b) Image
datasets.

(a) (b) (c)

Fig. 4. Latent factor U and target predictions Vt output by GTL2 on cross-domain image dataset VOC vs MSRC: (a) γ = 0. (b) σ = 0. (c) Optimal
parameters.

not compared since its original implementation cannot deal
with multi-class problems.

We observe that GTL2 and GTL3 significantly outper-
form all baseline methods on most of the datasets, which
verifies that graph co-regularization is generally very effec-
tive for cross-domain knowledge transfer, and is transpar-
ent to base models (NMF and NMTF). However, GTL3 does
achieve considerably worse performance than GTL2, which
indicates that NMF may be a more suitable base model
than NMTF for GTL. In this sense, GTL works better if suf-
ficient knowledge can be transferred across domains (see
Section 3.3.2).

It is also noteworthy that GTL has achieved much bet-
ter performance than GCMF. The reason is that GCMF
may suffer from the trivial solution problem. By imposing
the orthogonality constraints, GTL can fully address this
problem and thus perform more robustly.

We notice that, the transfer learning methods TCA, LP,
CMF, and MTrick have underperformed standard learning
methods LR on some datasets, e.g., MNIST vs USPS and
PIE2 vs PIE1. This is an example of the negative transfer
problem. In these datasets, the domain differences are so
large that it is very difficult to extract some “common” fac-
tors to build up good connections for knowledge transfer.
In other words, the common factor assumption made by
the baseline methods is violated and thus negative transfer
occurs.

Noteworthily, GTL performs robustly and does not
suffer from the negative transfer problem. The main
reason is that the domain-specific geometric structure
is respected no matter whether some “common” latent
factors can be discovered between different domains.
In a word, if the statistical and geometric proper-
ties are inconsistent across domains, they can nego-
tiate with each other and let in-domain geometric
property dominate the target tasks to alleviate negative
transfer.

5.4 Effectiveness Verification
We verify the effectiveness of GTL by inspecting the
impacts of graph co-regularization and orthogonality.

5.4.1 Graph Co-Regularization
First, we remove the graph co-regularization terms by set-
ting λ = γ = 0 as in Fig. 4a, where warmer colors
indicate larger values. Notice that, each column of Vt cor-
responds to one example class, and each row of Vt is
the class assignments to an example. Comparing Vt with
Yt, the groundtruth target labels, we observe that many
target examples are assigned to the wrong classes. The
reason is that the geometric structure, i.e., similar exam-
ples should have similar labels, is not carefully preserved
for each domain. In this case, the cross-domain statisti-
cal property and the in-domain geometric structure may
be inconsistent, which leads to the violation of the target
domain data distribution. By using graph co-regularization,
GTL can respect the domain-specific geometric structure
and thus output better class/cluster structure, as shown in
Fig. 4(c).

5.4.2 Orthogonality Constraints
Secondly, we remove the orthogonality regularization term
by setting σ = 0 as in Fig. 4(b). Comparing Vt with Yt, we
observe that many target examples are assigned to mul-
tiple (and possibly wrong) classes. This is an example of
the trivial solution problem. By imposing the shrinkage-style
regularization for the orthogonality, this problem is fixed as
in Fig. 4(c).

5.5 Parameter Sensitivity
We conduct empirical parameter sensitivity analysis, which
validates that GTL can achieve optimal performance under
wide range of parameter values. Due to space limita-
tion, we randomly select one dataset from 20-Newsgroups,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Parameter sensitivity, convergence, and runtime of GTL2 (dashed lines show the best baseline results): (a) #nearest neighbors p.
(b) Orthogonality reg. σ . (c) Feature graph reg. λ. (d) Example graph reg. γ . (e) Accuracy w.r.t. #iterations. (f) Objective w.r.t. #iterations.
(g) Orthogonality w.r.t. #iterations. (h) Runtime of algorithms.

Reuters-21578, USPS & MNIST, PIE, MSRC & VOC2007
respectively to discuss the results.

#Nearest Neighbors p: We run GTL2 with varying val-
ues of p. Intuitively, larger values of p will result in denser
nearest-neighbor graphs. To achieve optimal performance, p
should be neither too large nor too small, since an extremely
dense graph (p→∞) will connect two examples/features
which are not similar at all, while an extremely sparse
graph (p → 0) will capture limited similarity informa-
tion between examples/features. We plot the classification
accuracy w.r.t. different values of p in Fig. 5(a), which
indicates a wide range p ∈ [4, 32] for optimal parameter
values.

Orthogonality Regularization σ : We run GTL2 with
varying values of σ . Theoretically, σ controls the degree
of orthogonality that is satisfied. When σ → 0, GTL will be
ill-defined and prone to trivial solutions. On the contrary,
when σ → ∞, GTL will be dominated by the shrinkage
regularizer without any fitting. We plot the classification
accuracy w.r.t. different values of σ in Fig. 5(b), and choose
σ ∈ [1, 500]. As a rule of thumb, in practice we can often
choose σ ∈ [γ, 10γ ].

Feature Graph Regularization λ: We run GTL2 with
varying values of λ. Theoretically, λ controls the weight of
feature graph regularization, and larger values of λ make
geometric structure on features more important in GTL.
When λ → ∞, only the geometric structure is preserved
while labeled information is discarded. We plot classifica-
tion accuracy w.r.t. different values of λ in Fig. 5(c), and
choose λ ∈ [0.001, 1]. It is noteworthy that the feature graph
regularization is much more effective for image data than
text data.

Example Graph Regularization γ : We run GTL2 with
varying values of γ . Theoretically, γ controls the weight of
example graph regularization, and larger values of γ make
geometric structure on examples more important in GTL.

When γ →∞, only geometric structure is preserved while
labeled information is discarded. We plot classification
accuracy w.r.t. different values of γ in Fig. 5(d), and choose
γ ∈ [1, 100].

5.6 Convergence Study
Since GTL is an iterative algorithm, we need to check
its convergence property empirically by running GTL2 on
the five selected datasets. Fig. 5(e) shows the classifica-
tion accuracy w.r.t. #iterations. Fig. 5(f) shows the objective
function w.r.t. #iterations. From these figures we find that
the classification accuracy (objective function) increases
(decreases) steadily with more iterations and converges
after 100 iterations.

Also, since we adopt a shrinkage methodology to sat-
isfy the orthogonality constraints, we need to check the
satisfaction of orthogonality. We run GTL2 on the selected
datasets, and plot the satisfaction of orthogonality, i.e.,∑

π∈�
∥∥VT

π Vπ − I
∥∥2

F/
∑

π∈� ‖I‖2F, in Fig. 5(g). We find that
the orthogonality constraints are iteratively satisfied and
converged after 100 iterations.

5.7 Time Complexity
We check the time complexity of all methods empirically
by running them on the 36 comp vs rec datasets with 25,800
features and 8,000 documents, and show the results in
Fig. 5(h). We see that GTL can achieve comparable time
complexity as the baseline methods.

6 CONCLUSION

In this paper, we have proposed a general framework,
referred to as Graph Co-Regularized Transfer Learning
(GTL), to address the cross-domain learning problems.
Specifically, GTL aims to extract common latent factors for
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knowledge transfer by preserving the statistical property
across domains, and simultaneously, refine the latent factors
to alleviate negative transfer by preserving the geomet-
ric structure in each domain. An important advantage
of GTL is that it can address the shortcomings of most
existing transfer learning methods which focus on only
one aspect of the data. Furthermore, many matrix fac-
torization methods, e.g., NMF and NMTF, can be readily
incorporated into the GTL framework to address transfer
learning. Comprehensive experiments on 222 text datasets
and 6 image datasets verify that GTL approaches can
significantly outperform state-of-the-art transfer learning
methods.
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